Identification of the genes involved in the fruiting body production and cordycepin formation of *Cordyceps militaris* fungus

Zhuang-li Zheng\(^1,2^*\), Xue-hong Qiu\(^2^*\), Ri-chou Han\(^2^{**}\)

Running title: Genes involved in fruiting body and cordycepin production in *C. militaris.*

\(^1\) Henan Academy of Sciences, Zhengzhou 450008, China.

\(^2\) Guangdong Entomological Institute, Guangzhou 510260, China.

*These authors contributed equally to this work.

**Corresponding author: Ri-chou Han (E-mail: hanrc@gdei.gd.cn). Tel: +86-20-84191089.
Abstract:

Cordyceps militaris is an insect-born fungus with various biological and pharmacological activities. A *C. militaris* mutant library was constructed by improved *Agrobacterium tumefaciens*-mediated transformation (ATMT) and screened for degradation features. Six mutants with altered characters in *in vitro* and *in vivo* fruiting body production, and cordycepin formation were obtained. Southern analysis showed that the mutants contained a single T-DNA copy. Thermal asymmetric interlaced-PCR (TAIL-PCR) approach was used to identify T-DNA flanking sequences from the mutants. Three genes (ATP-dependent helicase, cytochrome oxidase subunit I and ubiquitin-like activating enzyme) involved in *in vitro* fruiting body production, one gene (serine/threonine phosphatase) involved in *in vivo* fruiting body production, and two genes (glucose-methanol-choline oxidoreductase and telomerase reverse transcriptase) involved in cordycepin formation were identified respectively. These genes were analyzed by bioinformatics methods, and their molecular function and biology process were speculated by GO analysis. The results provided useful information for the control of culture degeneration in commercial production of *C. militaris*.

Keywords: *Cordyceps militaris*; *Agrobacterium tumefaciens*; Degeneration; Fruiting body; Cordycepin.
Introduction

Cordyceps militaris is an insect-born fungus with abundant active constituents and a multitude of pharmacological activities. The immunomodulatory, anti-tumor, anti-inflammatory and anti-oxidative activities of this fungus were demonstrated in several medical models [1-3].

For the great demand of *C. militaris* products at the market, methods for commercial production of fruiting bodies of this fungus have been established in artificial media [4-5] or with several insects, such as silkworm *Bombyx mori* pupae[6-7], millworm *Tenebrio molitor* pupae [8] and greater wax moth *Galleria mellonella* larvae [9]. Usually, four pivotal growth periods are identified during cultivating *C. militaris* fruiting bodies, including mycelial culture, color induction, stromal stimulation, and fruiting body production [10, 5]. For the better commercialization of this medical fungus, several improvements are of great importance, including prevention of the culture loss during *in vitro* or *in vivo* fruiting body production, increase of the active constituents (particularly cordycepin) and enhancement of the fungal pathogenicity to the target insects.

Fungal degeneration is detrimental to the culture of this fungus. Detection of the culture degeneration in the early stage may avoid great economic loss. Apart from the reports of phenotypic variation in the degenerative fungal cultures with *Metarhizium anisopliae* [11], little information is available to explain the culture instability of *C. militaris* at the molecular level.

As an entomopathogenic fungus, *C. militaris* not only infects different insect hosts, but also produces fruiting bodies from its hosts. Infection ability is very important in this process. The critical genes involved in the fungal pathogenicity were identified, including adhesin MAD1 [12], Subtilisin-like (Pr1), trypsin-like (Pr2), and chitinases (CHI1) from *M. anisopliae* [13-14], and two serine protease genes (*csp1* and *csp2*) from *Ophicordyceps sinensis* [15].
But no reports are available on the molecular control of the *C. militaris* growth in the infected insect hosts.

Cordycepin (3’-deoxyadenosine), a nucleoside derivative, is a major bioactive compound found in *Cordyceps* species [16, 3]. High production of cordycepin in *Cordyceps* cultures significantly increases the commercial value of this fungus. Methods to increase the cordycepin production by optimizing the culture medium and conditions were reported recently [17-18]. However, the genes involved in the cordycepin production in *C. militaris* are unknown.

Agrobacterium tumefaciens-mediated transformation (ATMT) was used for insertional mutagenesis in *C. militaris* [5]. In this study, attempts were made to identify the genes involved in *in vitro* and *in vivo* fruiting body production, and cordycepin formation from *C. militaris* mutant library.

Materials and methods

Fungal strains and media

A laboratory and commercial JM4 strain of *C. militaris* from Guangdong Entomological Institute was used. Potato dextrose agar supplemented with 10 % peptone (PPDA) was prepared for culturing *C. militaris*. The stock culture of this strain was maintained on PPDA plates at 4°C. *Escherichia coli* strain DH5α (Tiangen, China) was used as a host for the propagation of plasmid DNA. *A. tumefaciens* strain AGL-1 (provided by Prof. Zide Jiang from South China Agricultural University, China) was maintained at 28°C on Luria-Bertani medium.

Fungal transformation

A random T-DNA insertion library of *C. militaris* JM4 was constructed by the ATMT method as described previously, with *A. tumefaciens* strain AGL-1 carrying the binary vector
pATMT1 with hyg gene under the *Aspergillus nidulans trpC* promoter [5]. Mutants with altered characters in *in vitro* and *in vivo* fruiting body production, and cordycepin formation were screened. The copy number of T-DNA in transformants was determined by Southern analysis using a PCR-amplified digoxigenin-labeled hyg gene probe and DIG High Prime DNA labeling and Detection Starter Kit (Roche, Switzerland).

Cultures for fruiting body production

In vitro fruiting body production of *C. militaris* was performed with an artificial medium containing 20 g rice, 0.5 g powder of silkworm pupae and 25 ml nutrient solution (glucose 20 g, KH$_2$PO$_4$ 2 g, MgSO$_4$ 1 g, ammonium citrate 1 g, peptone 5 g, Vitamin B1 20 mg and 1000 ml distilled water), according to the method by Zheng et al. (2011) [5]. The phenotypic characters of transformants, including mycelial growth and color in PPDA, together with the stromal and fruiting body formation on the artificial medium, were observed. The fresh weight of fruiting bodies from each bottle was recorded.

In vivo fruiting body production of *C. militaris* in the infected *G. mellonella* larvae was also performed according to the method by Han et al. (2006) [9]. The mycelia and conidia (at least 106 conidia/ml) for infecting insect larvae were prepared by taking a patch of *C. militaris* with hypha body from PPDA plates (1 cm×1 cm) into 6 ml shaking sterile water. 1 ml of the suspension was introduced into a 100 ml culture bottle (FB33144 bottle, Weijia Company, Guangzhou) with two layers of filter paper and one larva of greater wax moth *G. mellonella* (supplied by Guangdong Entomological Institute, Guangzhou). The bottle cap was loosely closed and sealed by parafilm (Pechiney Plastic Packaging, USA), placed at 12-14°C for 2 weeks and then at 20°C for fruiting body formation. The infected larvae were recorded every two days. Three replicates were established for each treatment. All the experiments were repeated twice.

Cordycepin assay
Mutants were checked for cordycepin formation by thin layer chromatography (TLC).

Cordycepin was extracted according to Haddad et al. [19]. Briefly, dried fruiting body (30 mg) of each mutant was mixed with 1 ml of 50% ethanol for 6 h in the dark at 25°C. The extracts were centrifuged (3000 rpm, 10 min, 4°C) and the supernatant was used directly for TLC analysis or stored in a refrigerator (4°C) until use.

Thin layer chromatography (TLC) was used to determine the cordycepin content of the mutants [20]. TLC is among the simplest, least expensive, and most easily performed chromatographic methods for mixture analysis.

TLC analyses were performed using aluminum sheets (5 × 20 cm) precoated with silica gel 60 F254 (layer thickness 0.2 mm) (Huankai Company, Guangzhou). The TLC plates were developed in a horizontal developing chamber. The solvent system includes: chloroform/ethyl acetate/isopropanol/water/strong ammonia-water (80/20/60/3/2, v/v/v/v). Chromatographic development of plates was performed at room temperature. After development, the plates were air-dried for 20 min. Separated compounds on the plates were visualized using long-wavelength 254nm UV illumination, then the photographs of the plates were taken by a Coolpix 990 digital camera (Nikon, Tokyo, Japan). The compounds spots on photographs of the plates were analyzed by Quantity One 4.6.2 program. Standard cordycepin for TLC analyses was purchased from Sigma Chemical (St.Louis, MO, USA). There were three replicates for each mutant.

Identification of T-DNA flanking sequences and full-length genes

Thermal asymmetric interlaced-PCR (TAIL-PCR) was employed to obtain genomic DNA sequences of *C. militaris* flanking inserted T-DNA from the selected transformants with the altered characters on fruiting body and cordycepin production, using a Genome Walking Kit (Takara, China). The PCR products were ligated into the pMD19-T vector (TaKaRa, China). The plasmid DNA was transformed into *E. coli* DH5α. Colony PCR was used to validate
positive clones which were subsequently sequenced by Invitrogen (Shanghai).

Full-length genes were obtained by 5'- and 3'-rapid amplification of cDNA ends (RACE) and TAIL-PCR. Briefly, total RNA was extracted using the trizol reagent (Invitrogen, USA). RNA yield was estimated spectrophotometrically, and the integrity of RNA was confirmed via the detection of discrete 18S and 28S ribosomal RNA bands after agarose gel electrophoresis. With gene-specific primers designed to flanking sequences, two partially overlapping cDNA fragments were generated from total RNA of *C. militaris* using RACE (SMARTer™ RACE cDNA Amplification Kit, Clontech). The PCR products were sequenced and confirmed as above. If the amplification of cDNA ends of some genes were not obtained by RACE method, TAIL-PCR was also applied to gain the upstream and downstream sequences of the T-DNA flanking fragment.

Bioinformatics analysis of sequences

DNA sequences from RACE PCR or TAIL-PCR were sequenced and assembled respectively. The sequences were compared with those available at the GenBank databases using BLASTn and BLASTx. Searches for potential open reading frames (ORF) were carried out using ORF Finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html). Classification of sequences was performed under Gene Ontology (GO) criteria. For a general approach, the BLAST2GO program (http://www.blast2go.de/) was used for a similarity search.

Results

Fungal transformation

400-600 T-DNA-tagged *C. militaris* mutants per 10^5 conidia were generated by *Agrobacterium tumefaciens*-mediated fungal transformation. 34 mutants with degradation features were obtained by screening. Southern blot analysis showed that the mutants contained 1 or 2 copy of T-DNA and more than 64% mutants contained a single copy.
mutants with a single T-DNA copy involved in altered phenotypes, cordycepin metabolic disorder or decreased entomopathogenic ability were characterized.

Mutants and genes involved in abnormal in vitro fruiting body production

The fresh weight decline of the fruiting bodies is one of the signs of *C. militaris* degradation. Average fresh weight of the fruiting bodies from 600 transformants was determined to isolate the degenerated mutants [5]. Two mutants (SA189 and SB60) produced poor fruiting bodies, compared to wild-type *C. militaris* JM4. Moreover, mutant SA11 was found without color change after light induction (Fig 1).

The T-DNA flanking and full–length sequences of SA11, SA189 and SB60 were obtained by TAIL-PCR or RACE methods (The full-length or partial sequences of the genes have been submitted to GenBank, the accession numbers were shown in Table 1).

The assembled T-DNA flanking sequence from SA189 was homologous to ATP-dependent helicase gene from *M. anisopliae* (EFZ02692.1) and *Penicillium marneffei* (XP_002144718.1) (Table 1). The putative ATP-dependent helicase of *C. militaris* contained a DEXDc (DEAD-like helicases superfamily) domain and a HELICc (helicase superfamily c-terminal) domain, predicted in SMART database (Simple Modular Architecture Research Tool, http://smart.embl-heidelberg.de/). The DEAD box helicases are involved in various aspects of RNA metabolism, including nuclear transcription, pre mRNA splicing, ribosome biogenesis, nucleocytoplasmic transport, translation, RNA decay and organellar gene expression. The HELICc might not be an autonomously folding unit, but an integral part of the helicase (SMART database).

The T-DNA flanking sequence of SA60 was homologous to ubiquitin-like activating enzyme E1 gene from *Verticillium alboatrum* (XP_003009099.1). RT-PCR was also carried out to confirm the cDNA sequence of ubiquitin-like activating enzyme gene in *C. militaris* (data not shown). The full-length sequences of ubiquitin-like activating enzyme E1 gene
between genomic DNA (1804 bp) and cDNA (1689 bp) were aligned and compared (Table 1). The result showed that there were four introns in the gene, in position 178 bp (intron length 60 bp), position 406 bp (intron length 58 bp), position 1046 bp (intron length 48 bp) and position 1394 (intron length 54 bp). The downstream sequence of E1 contained a putative ubiquitin-like ligase E3 gene (Accession No. JQ680979), which was homologous to that of V. alboatrum (XP_003009099.1). A intron was found in full-length ubiquitin-like ligase E3 gene of C. militaris in position 58 bp (intron length 56 bp).

From the T-DNA flanking sequence of mutant SA11, the full-length cytochrome oxidase subunit I gene (cox1, Accession No. JQ680973) of C. militaris was obtained by TAIL-PCR, containing a 1593 bp coding region of cox1 (CRcox1) interrupted by a 1050 bp group I intron coding a LAGLIDADG endonuclease. The transcriptional analysis and molecular characterization of this gene was reported in our previous paper [5].

Mutants and genes involved in in vivo fruiting body production

From 600 transformants, no mutant was detected to completely lose infection capacity to G. mellonella larvae, while 8 mutants were found with different infection outputs. Mutant SA125 was one of the mutants showing abnormal fruiting body production (no stromal production or no sclerotia formation) in infected G. mellonella larvae (Fig 2). The mutant appeared not to fully use the cadavers as nutrients for the development (Fig. 2). The full-length T-DNA flanking sequence of SA125 (Accession No. JQ680975) was predicted to be homologous to serine/threonine phosphatase gene from M. anisopliae (EFY99037.1) (Table 1).

Mutants and genes involved in cordycepin deficiency

The cordycepin production of 600 mutants was determined by TLC for semi-quantitative analysis. The cordycepin contents of most mutants and wild type JM4 were higher than the standard concentration (0.5mg/mL). However, the cordycepin contents of five mutants were
much lower than that of wild type JM4. Mutant SA31 and SA145 were two of them showing
cordycepin deficiency (Fig 3).

The assembled T-DNA flanking sequences from SA31 and SA145 were predicted to be
homologous to telomerase reverse transcriptase gene from *M. anisopliae* (EFZ00131.1) and
glucose-methanol-choline oxidoreductase gene from *M. anisopliae* (EFY96931.1),
respectively.

Gene Ontology analysis

Gene Ontology database was used to analyse the putative biological processes and
molecular functions of the identified genes. Three genes (ATP-dependent helicase,
ubiquitin-like activating enzyme E1 and cytochrome c oxidase subunit I) included the
following five categories: metabolic process (GO:0008152), aerobic respiration
(GO:0009060), electron transport chain (GO:0022900) and oxidation-reduction process
(GO:0055114); Regarding molecular functions, they included the following categories: DNA
binding (GO:0003677), ATP binding (GO:0005524), helicase activity (GO:0004386),
catalytic activity (GO:0003824), protein binding (GO:0005515), zinc ion binding
(GO:0008270), ligase activity (GO:0016874), metal ion binding (GO:0046872),
cytochrome-c oxidase activity (GO:0004129), iron ion binding (GO:0005506), electron
carrier activity (GO:0009055) and oxidoreductase activity (GO:0016491). The biological
processes of the gene (glucose-methanol-choline oxidoreductase) related to the cordycepin
production included RNA-dependent DNA replication (GO:0006278) and alcohol metabolic
process (GO:0006066); while its molecular functions included DNA binding (GO:0003677),
telomeric template RNA reverse transcriptase activity (GO:0003721), RNA binding
(GO:0003723), RNA-directed DNA polymerase activity (GO:0003964), flavin adenine
dinucleotide binding (GO:0050660) and oxidoreductase activity (acting on CH-OH group of
donors) (GO:0016614). The serine/threonine phosphatase gene, influencing *C. militaris*
fruiting body production in infected *G. mellifera* larvae, possessed the molecular functions of phosphoprotein phosphatase activity (GO:0004721) and hydrolase activity (GO:0016787).

Discussion

From *C. militaris* mutant library, several genes involved in mutated characters, such as abnormal fruiting body production in artificial medium and infected insects, or lower cordycepin formation, were successfully identified. The results would provide useful information for the effective control of culture degeneration in commercial production of *C. militaris*.

Fungal culture degeneration is usually irreversible and inheritable, and can result in great commercial losses [21-22]. In *C. militaris*, culture degeneration was reflected with poor fruiting body production. The degenerate strains usually showed significantly lower protease activity, chitinase activity, dehydrogenase activity, oxidative stress, decolorization activity or/and infection activity to *Galleria* larvae [23]. In the present study, three genes (cytochrome c oxidase subunit I, ATP-dependent helicase and ubiquitin-like activating enzyme E1) were identified to be involved in the poor fruiting body production in the artificial medium.

Cytochrome c oxidase subunit I, encoded by mitochondrial DNA (mtDNA), was the terminal component of the mitochondrial respiratory chain, transfers electrons from reduced cytochrome c to molecular oxygen. Fungi degeneration was closely related to mitochondria, including mitochondrial DNA alterations [11], mtDNA glycation [24] and decreasing activation of dehydrogenase in mitochondria [23]. It was conceivable that the disruption of cytochrome c oxidase subunit I with a group I intron [5] might affect the respiration and growth of *C. militaris* mutant. ATP-dependent helicase was implicated in many cellular processes, including translation initiation [25], and pre-mRNA splicing [26]. Several putative RNA helicases were found in ribosome biogenesis in *Saccharomyces cerevisiae* [27-28]. The
mutation of ATP-dependent RNA helicase caused a severe slow-growth phenotype in *S. cerevisiae* [27]. Here the ATP-dependent helicase mutant caused no fruiting body production of *C. militaris*. *C. militaris* also contained a 1689 bp gene encoding putative ubiquitin-like activating enzyme E1, an essential gene with extensive sequence similarity to the E1 genes in other fungi. A 1063 bp gene encoding ubiquitin-like ligase E3, located on the downstream sequence of E1, was also isolated. Ubiquitin was activated in an ATP-dependent manner by a ubiquitin-activating enzyme (E1), and was then transferred to a ubiquitin-conjugating enzyme (E2) through a thioester bond. A ubiquitin-protein ligase (E3) specifically attached ubiquitin to the ε-amino group of a lysine residue in the target protein [29]. Ubiquitin-like proteins were signaling messengers that control many cellular functions, such as cell proliferation, apoptosis, the cell cycle and DNA repair [29]. It was interesting that ubiquitin-like activating enzyme E1 in *C. militaris* also controlled the fruiting body production.

No stromal production or sclerotia formation was found in *G. mellonella* larval cadavers infected by mutant SA125. A 1347 bp serine/threonine phosphatase gene was involved in this mutated phenotype. Serine/threonine phosphatases usually control key biological pathways including early embryonic development, cell proliferation, cell death, circadian rhythm and cancer [30]. It was reported that the kinase homologue involved in fungal pathogenesis was required for full virulence in disparate hosts [31]. Although serine/threonine phosphatase gene did not influence the pathogenic ability of this fungus against *G. mellonella* larvae, it was involved in the fruiting body production in the infected insect larvae.

Cordycepin contents in mutant SA31 and SA145 were scarcely detected by TLC and obviously lower than that in wild type JM4. Two genes, encoding telomerase reverse transcriptase and glucose-methanol-choline oxidoreductase were involved in the cordycepin production in *C. militaris*. The study of telomerase reverse transcriptase mainly focused on human disease. Most telomerase reverse transcriptase gene variants reduced telomerase
enzymatic activity \textit{in vitro}. Loss-of-function telomerase gene variants associated with short
telomeres were risk factors for sporadic cirrhosis [32]. The expression of telomerase reverse
transcriptase in different parts of human body was found associated with cancer [33-34].
Glucose-methanol-choline oxidoreductase played an important role of cyanohydrin formation
and fungal degradation of lignin [35-36]. It could also oxidize phenolic and nonphenolic
benzyl alcohols in \textit{Bjerkandera} [37]. Fungal pyranose oxidase, belonging to
glucose-methanol-choline oxidoreductase family, was a flavoenzyme whose preferred
substrate among several monosaccharides was D-glucose [38]. Cordycepin might involve in
flavin adenine dinucleotide binding and oxidoreductase activity (acting on CH-OH group of
donors) according to the gene GO analysis.

\textbf{Acknowledgement}

The work was supported by the Guangdong Province-Chinese Academy of Sciences
Comprehensive Strategic Cooperation Project (2009B091300015), Research Project of
Guangdong Province (2010A040301012) and Young Scientist Fund of Guangdong Academy
of Sciences (qnjj201301).

\textbf{Reference}

1. Won SY, Park EH. Anti-inflammatory and related pharmacological activities of cultured
2. Das SK, Masuda M, Sakurai A, Sakakibara M. Medicinal uses of the mushroom
3. Tuli HS, Sharma AK, Sandhu SS, Kashyap D. Cordycepin: a bioactive metabolite with
4. Xie CY, Gu ZX, Fan GJ, Gu FR, Han YB, Chen ZG. Production of cordycepin and
mycelia by submerged fermentation of *Cordyceps militaris* in mixture natural culture.

23. Lin QQ, Qiu XH, Zheng ZL, Xie CH, Xu ZF, Han RC. Characteristics of the degenerate

 Jun Y, Ng HK, Ling MT, Huang AL, Cai XF, Ko BC. Sirtuin 1 is upregulated in a subset
 of hepatocellular carcinomas where it is essential for telomere maintenance and tumor cell

34. Porika M, Tippani R, Bollam SR, Panuganti SD, Thamidala C, Abbagani S. Serum
 human telomerase reverse transcriptase: a novel biomarker for breast cancer diagnosis. Int

35. Dreveny I, Andryushkova AS, Glieder A, Gruber K, Kratky C. Substrate binding in the
 FAD-dependent hydroxynitrile lyase from almond provides insight into the mechanism of

 oxidase involved in lignin degradation: a mechanistic study based on steady and
 pre-steady state kinetics and primary and solvent isotope effects with two alcohol

37. Romero E, Ferreira P, Martínez AT, Martínez MJ. New oxidase from Bjerkandera
 arthroconidial anamorph that oxidizes both phenolic and nonphenolic benzyl alcohols.

38. Albrecht M, Lengauer T. Pyranose oxidase identified as a member of the GMC
Table 1 Homology analysis (BLASTx) of the T-DNA-insertion sites in the mutants of *C. militaris*

<table>
<thead>
<tr>
<th>Mutant</th>
<th>Altered characters</th>
<th>Putative disrupted gene</th>
<th>Accession</th>
<th>Highest identity</th>
<th>E-value</th>
<th>Accession No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA1</td>
<td>No in vitro fruiting body production</td>
<td>Cytochrome c oxidase subunit I</td>
<td>JQ680973</td>
<td>Beauveria bassiana (96%)</td>
<td>0</td>
<td>YP_0018765</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB6</td>
<td>No in vitro fruiting body production</td>
<td>ATP-dependent helicase</td>
<td>JQ680976</td>
<td>Metarhizium anisopliae (69%)</td>
<td>0</td>
<td>EFZ02692.1</td>
</tr>
<tr>
<td></td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA1</td>
<td>No in vitro fruiting body production</td>
<td>Ubiquitin-like activating enzyme E1</td>
<td>JQ680978</td>
<td>Verticillium alboatrum (55%)</td>
<td>1E-1</td>
<td>XP_0030090</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA1</td>
<td>No in vivo fruiting body production</td>
<td>Serine/threonine phosphatase</td>
<td>JQ680975</td>
<td>Metarhizium anisopliae (80%)</td>
<td>1E-1</td>
<td>EFY99037.1</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA3</td>
<td>Cordycepin deficiency</td>
<td>Telomerase reverse transcriptase</td>
<td>JQ680977</td>
<td>Metarhizium anisopliae (47%)</td>
<td>5E-6</td>
<td>EFZ00131.1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA1</td>
<td>Cordycepin deficiency</td>
<td>Glucose-methanol-choline oxidoreductase</td>
<td>JQ680974</td>
<td>Metarhizium anisopliae (90%)</td>
<td>3E-7</td>
<td>EFY96931.1</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 1. *In vitro* fruiting body production of the insertional mutants of *C. militaris* in the artificial medium containing 20 g rice, 0.5 g powder of silkworm pupae and 25 ml nutrient solution (glucose 20 g, KH$_2$PO$_4$ 2 g, MgSO$_4$ 1 g, ammonium citrate 1 g, peptone 5 g, Vitamin B1 20 mg and 1000 ml distilled water). Mutant SA11, no color production; mutant SA189 and SB60, poor fruiting body production; JM4, wild-type strain.
Fig. 2. *In vivo* fruiting body production of the insertional mutants of *C. militaris* in the infected *Galleria mellonella* larvae. Mutant SA125, no stromal production or sclerotia formation; JM4, wild-type strain.
Fig. 3. Cordycepin production determined by TLC in the insertional mutants of *C. militaris.* Among mutants SA28, SA41, SA74, SA75, SA31, SA91, SA100, SA122 and SA145, the cordycepin contents of the mutants SA31 and SA145 were significantly lower than that of wild type JM4. The standard cordycepin, adenoside, uridine and guanine, were marked as cordycepin, A, U and G. CK, wild type JM4.